View on GitHub
File Changes
  The proof is essentially unfolding the definition of the predicate
  \begin{equation}
    \label{cons-is-prod}
-
    \consumed{pp}{utxo}{stkCreds}{rewards}~{tx} = \produced{pp}{stpools}~{tx}
+
    \consumed{pp}{utxo}{stkCreds}{rewards}~{t} = \produced{pp}{stpools}~{t}
  \end{equation}
  and applying a little algebra.
%
If we let:
  \begin{equation*}
    \begin{array}{[email protected]{~=~}l}
-
      k & \keyRefunds{pp}{stkCreds}{tx} \\
-
      f & \txfee{tx} \\
-
      d & \totalDeposits{pp}{stpools}{(\txcerts{tx})} \\
-
      c & \decayedTx{pp}{stkCreds}~{tx} \\
+
      k & \keyRefunds{pp}{stkCreds}{t} \\
+
      f & \txfee{t} \\
+
      d & \totalDeposits{pp}{stpools}{(\txcerts{t})} \\
+
      c & \decayedTx{pp}{stkCreds}~{t} \\
    \end{array}
  \end{equation*}
  then equation~\ref{cons-is-prod} can be rewritten as:
    & \text{(by adding $c-c$)}
    \end{array}
  \end{equation*}
-
  Therefore $\Val(s) + w = \Val(s')$.
+
  Note that in order to apply Lemma~\ref{lemma:value-sum-pres-2} above,
+
  it must be true that $(\txins{t} \subtractdom{\var{utxo}})$ and $(\outs{t})$
+
  have disjoint domains, which follows from the uniqueness of the transaction IDs.
+

                      
+
  Therefore, by adding the deposits and fees from $s$ to the equality above,
+
  it follows that $\Val(s) + w = \Val(s')$.
\end{proof}

                      
\begin{lemma}
  Notice that $\var{unclaimed}$ is added to $\var{treasury}$
  and subtracted from the $\var{deposits}$.
  Moreover, $\var{refunded}$ is subtracted from $\var{deposits}$.
-
  (Note that $\var{deposits}-\var{unclaimed}+\var{refunded}$
+
  (Note that $\var{deposits}-(\var{unclaimed}+\var{refunded})$
  is non-negative by Theorem~\ref{thm:non-neg-deposits}.)
  It therefore suffices to show that
  \begin{equation*}

                      
\begin{lemma}
  \label{lemma:ru-pres-of-value}
-
  For all mappings $b$ of blocks made, and epoch states $s_1$ and $s_2$,
+
  For every $(\Delta t,~\Delta r,~\var{rs},~\Delta f)$ in the range of $\fun{createRUpd}$,
  \begin{equation*}
-
    \Val(s_2) = \Val(\fun{applyRUpd}~(\fun{createRUpd}~b~s_1)~s_2)
+
    \Delta t + \Delta r + \Val(rs) + \Delta f = 0
  \end{equation*}
\end{lemma}

                      
\begin{proof}
-
  In the definition of $\fun{applyRUpd}$ in Figure~\ref{fig:functions:reward-update-application},
-
  we see that we must show that:
-
  \begin{equation*}
-
    \Delta t + \Delta r + \Val(rs) + \Val(\var{update_{rwd}}) + \var{nonDistributed} + \Delta f = 0
-
  \end{equation*}
-
  Note that only $\var{nonDistributed}$ and $\var{update_{rwd}}$ depend on $s_2$,
-
  as all the other values are pure computations based on $s_1$.
-

                      
  In the definition of $\fun{createRUpd}$ in Figure~\ref{fig:functions:reward-update-creation},
-
  using only variable names for values in $s_1$,
-
  we see that:
+
  We see that:
  \begin{equation*}
    \begin{array}{[email protected]{~=~}l}
-
      \var{rewardPot} & \var{feeSS} + \Delta r_l \\
+
      \var{rewardPot} & \var{feeSS} + \Delta r \\
      \var{R} & \var{rewardPot} - \Delta t_1 \\
      \Delta t_2 & R - \Val(\var{rs})\\
-
      \Delta r & - (\Delta r_l+\Val(i_{rwd})) \\
-
    \end{array}
-
  \end{equation*}
-
  Therefore
-
  \begin{equation*}
-
    \begin{array}{c}
-
      (\var{feeSS} + \Delta r_l) = \var{rewardPot} = R + \Delta t_1 = \Delta t_2 + \Val(rs) + \Delta t_1  \\
-
      0 = (\Delta t_1 + \Delta t_2 ) - \Delta r_l + \Val(rs)- \var{feeSS} \\
+
      \Delta t & \Delta t_1 + \Delta t_2 \\
    \end{array}
  \end{equation*}
-
  It then suffices to show that:
-
  \begin{equation*}
-
    -\Val(i_{rwd}) + \Val(\var{update_{rwd}}) + \var{nonDistributed} = 0
-
  \end{equation*}
-
  Notice that $\var{i}_{rwd}$ (from $s_1$) is the disjoint union of
-
  $\var{rew'}_{\var{mir}}$ and $\var{unregistered}$.
  Therefore
  \begin{equation*}
    \begin{array}{[email protected]{~=~}l}
-
      \Val(\var{registered}) & \Val(\var{rew}_{\var{mir}}) \\
-
                             & \Val(\var{rew'}_{\var{mir}}) + \Val(\var{unregistered}) \\
-
                             & \Val(\var{update}_{rwd}) + \var{nonDistributed}
+
      (\var{feeSS} + \Delta r) & \var{rewardPot} = R + \Delta t_1 = \Delta t_2 + \Val(rs) + \Delta t_1  \\
+
      0 & (\Delta t_1 + \Delta t_2 ) - \Delta r + \Val(rs)- \var{feeSS} \\
+
      0 & \Delta t - \Delta r + \Val(rs)- \var{feeSS} \\
    \end{array}
  \end{equation*}
+
  It then suffices to notice that $\fun{createRUpd}$ returns
+
  $(\Delta t,-~\Delta r,~\var{rs},~-\var{feeSS})$.
\end{proof}

                      
\noindent
+

                      
+
Note that Lemma~\ref{lemma:ru-pres-of-value} is not strictly need for the proof of
+
Theorem~\ref{thm:chain-pres-of-value}, since the $\mathsf{NEWEPOCH}$ transition
+
requires that $\Delta t + \Delta r + \Val(rs) + \Delta f = 0$ holds.
+
It does, however, give us confidence that the $\mathsf{CHAIN}$ transition can proceed.
+

                      
We are now ready to prove Theorem~\ref{thm:chain-pres-of-value}.

                      
\begin{proof}
  and subtracted from $\var{deposits}$.
  Similarly, \POV{NEWPP} holds since $\var{diff}$ is added to $\var{reserves}$
  and subtracted from $\var{deposits}$.
-
  Therefore \POV{EPOCH} holds by Lemma~\ref{lemma:poolreap-pres-of-value}
-
  and \POV{NEWEPOCH} holds by Lemma~\ref{lemma:ru-pres-of-value}.
+
  Therefore \POV{EPOCH} holds by Lemma~\ref{lemma:poolreap-pres-of-value}.
+
  \POV{MIR} holds since
+
  $\Val{i_{rwd}'}=\var{tot}$ in Figure~\ref{fig:rules:mir}.
+
  Morover, \POV{NEWEPOCH} holds in the presence of $\fun{applyRUpd}$
+
  since the transition requires $\Delta t + \Delta r + \Val(rs) + \Delta f = 0$.
  \POV{CHAIN} easily follows from this.
\end{proof}